Find Resources

Natural Selection Programming

Posted May 11, 2021 by sgibbs

A lesson for middle school science that uses a variation of the rabbits and grass program to explore concepts of natural selection.

Debugging Challenges for StarLogo Nova

Posted July 27, 2018 by turtle

These challenges ask students to identify and correct common coding errors within StarLogo Nova programs. The first challenge is generic, all others relate to the content area module from CS in Science. Students like to solve the problems and fix the code, and learn about debugging skills while engaging further with content area modules. It is also a good review for instructions/facilitators before building code with students.

Simulación de un brote de Dengue

Posted March 29, 2017 by Rizzi

Este modelo simula la transmisión del virus del dengue en un barrio de cuatro manzanas durante 180 días. El vector del virus es el mosquito Aedes egyptii. La simulación muestra un gráfico con la evolución del brote (el cambio en la cantidad de personas sanas y de personas infectadas), otro gráfico con la evolución de la población de mosquitos y unos monitores que indican el estado de la población de mosquitos y cuántas personas fueron infectadas.

Daisy world

Posted April 3, 2017 by turtle

A model demonstrating the albedo effect of black or white surfaces. Use as a part of the Climate Change and Agriculture Project GUTS Curricular Unit, or as a stand-alone model, activity, and video.

Exploring the Wiggle Walk and Collisions via a Kinesthetic Activity

Posted August 4, 2017 by jhenderson

This activity teaches the Wiggle Walk blocks (random right by ___ degrees, random left by___ degrees), through a kinesthetic activity and explores when a programmer would want to code agents to move this way. It avoids the statical analysis of the random probabilities found in Module One, Lesson 4 Activity 1: Probability with Dice and Data and Colliding Turtles, while still addressing the end goals of the Module One Lesson 4.

Code Blocks for CS in Science Module 1: Intro to Computer Science & Simulation

Posted July 27, 2018 by sgibbs

Here are links to the Code Blocks for CS in Science Module 1, for StarLogo Nova 1.0 (Flash version), and the Code Blocks for CS in Science Module 1 for StarLogo Nova 2.0 (HTML5/JavaScript version). This is not the one-page Blocks and Drawers Guide for StarLogo Nova (those documents are linked below).

CS in Science: Module 1 Additional Resources

Posted July 27, 2018 by turtle

Ready to implement? Here are some additional resources and links to other Teachers with GUTS pages to help you with CS in Science, Module 1 (Introduction to Computer Modeling and Simulation). Some of the resources refer specifically to StarLogo Nova 1.0 (teacher videos) and others to StarLogo Nova 2.0 (link to models gallery). Check the relevant page for CS in Science Module 1 for the version of StarLogo Nova you are using.

Coding Challenges

Posted July 27, 2018 by turtle

Coding Challenge are a series of short challenges that focus on improving coding skills using StarLogo Nova. Each set of challenges focuses on a specific concept: degrees & heading, x & y coordinates and randomness, conditions including absolute value and percent chance, adding color to the terrain and repeat loops, using the z coordinate, and other computer science concepts (logic blocks, data collection),.

DECODE NYC Virtual Lesson Plan - MODIFYING A MODEL: OMNIVOROUS FOXES

Posted January 27, 2021 by wellina

This remote lesson serves as an opportunity for students to modify the code of an agent-based model to reflect the complexity of real-world food webs. Students will evaluate theeffectiveness of the modifications based on their understanding of population dynamics.

Walk & Turn for StarLogo Nova

Posted July 27, 2018 by turtle

This is the CS in Science, Module 1, Activity 1 activity. Students participate in an activity acting as agents, then view a computer model, to introduce concepts of computer science and complex adaptive systems.

Skill Building Deck

Posted June 12, 2019 by ilee

A slide deck of exercises to build CS and decoding skills

Module 3 Lesson 3 - Adding a Predator

Posted February 10, 2020 by wellina

In this lesson, students will modify the Rabbits and Grass model by adding a predator, a Mountain Lion, to answer a new question: “Does adding a top predator increase or decrease the stability of an ecosystem?” In the second activity, students will design and run experiments to see if adding a predator has an impact on the ecosystem. This activity will reinforce the concepts of energy flow through ecosystems and the often unexpected results of interactions in complex adaptive systems.

Module 3 Lesson 4 - Create Your Own Ecosystem Model

Posted February 10, 2020 by wellina

In this lesson, students will design their own ecosystems projects consisting of a question, experimental design and model. In the first activity, students will learn about the computational science cycle and use it to scope their project. This leads to a second activity where they start designing and implementing their model.

Decode NYC Models

Posted January 13, 2021 by wellina

In the NSF-funded DecodeNYC program at the American Museum of Natural History, middle school students use the agent-based game and simulation programming environment StarLogo Nova to use, modify, decode, and create scientific models to test different strategies for fighting Lyme disease and answer questions about their urban ecosystem.

Dengue outbreak simulation

Posted March 29, 2017 by Rizzi

This model simulates the transmission of the dengue virus in a neighborhood of four blocks during 180 (one hundred and eighty) days. The vector of the virus is the mosquito Aedes egyptii. The simulation shows a chart of the evolution of the outbreak (the change in the number of healthy people and infected people), another graph with the evolution of the mosquito population and some monitors that indicate the state of the mosquito population and how many people were infected.

If you can't find what you're looking for, send us a comment about what you were expecting to find.