Find Resources

Natural Selection Prey and Predator

Posted May 14, 2021 by sgibbs

This post includes a link to a model that can be used with the OpenSciEd Bacteria Food Hunt Unit net logo simulation.

Natural Selection Programming

Posted May 11, 2021 by sgibbs

A lesson for middle school science that uses a variation of the rabbits and grass program to explore concepts of natural selection.

DECODE NYC Virtual Lesson Plan - MODIFYING A MODEL: OMNIVOROUS FOXES

Posted January 27, 2021 by wellina

This remote lesson serves as an opportunity for students to modify the code of an agent-based model to reflect the complexity of real-world food webs. Students will evaluate theeffectiveness of the modifications based on their understanding of population dynamics.

Decode NYC Models

Posted January 13, 2021 by wellina

In the NSF-funded DecodeNYC program at the American Museum of Natural History, middle school students use the agent-based game and simulation programming environment StarLogo Nova to use, modify, decode, and create scientific models to test different strategies for fighting Lyme disease and answer questions about their urban ecosystem.

Module 3 Lesson 4 - Create Your Own Ecosystem Model

Posted February 10, 2020 by wellina

In this lesson, students will design their own ecosystems projects consisting of a question, experimental design and model. In the first activity, students will learn about the computational science cycle and use it to scope their project. This leads to a second activity where they start designing and implementing their model.

Module 3 Lesson 3 - Adding a Predator

Posted February 10, 2020 by wellina

In this lesson, students will modify the Rabbits and Grass model by adding a predator, a Mountain Lion, to answer a new question: “Does adding a top predator increase or decrease the stability of an ecosystem?” In the second activity, students will design and run experiments to see if adding a predator has an impact on the ecosystem. This activity will reinforce the concepts of energy flow through ecosystems and the often unexpected results of interactions in complex adaptive systems.

CS in Science Module 1: Introduction to Computer Modeling and Simulation (StarLogo Nova 2.0)

Posted July 27, 2018 by turtle

Module 1 introduces basic concepts in modeling complex systems through hands-on activities and participatory simulations. A scaffolded series of highly-engaging design and build activities guide students through developing their first computer model in StarLogo Nova 2.0, a modeling and simulation environment developed at the Massachusetts Institute of Technology.

CS in Science Module 3: Ecosystems as Complex Systems (for StarLogo Nova 2.0)

Posted July 27, 2018 by turtle

This Life Science module begins with an exploration of a simple predator-prey model to consider who eats whom—and what happens when one population grows faster than another. Students develop their own model of a local ecosystem and learn about ecosystem dynamics, producers and consumers, and interdependent relationships within an ecosystem. This module has been updated for StarLogo Nova 2.0 (HTML5/JavaScript version, updated 2017).

CS in Science Module 2: Shared Water Resources (StarLogo Nova 2.0)

Posted July 27, 2018 by turtle

In this Earth Science module, students will investigate the importance of ground water and the impacts of water usage on aquifer levels. They will also explore how to model important parts of the water cycle, including evaporation and infiltration of water into different types of soils to recharge the aquifers. This updated resource corresponds to StarLogo Nova 2.0 (HTML5/JavaScript version), a modeling and simulation environment developed at the Massachusetts Institute of Technology.

Exploring the Wiggle Walk and Collisions via a Kinesthetic Activity

Posted August 4, 2017 by jhenderson

This activity teaches the Wiggle Walk blocks (random right by ___ degrees, random left by___ degrees), through a kinesthetic activity and explores when a programmer would want to code agents to move this way. It avoids the statical analysis of the random probabilities found in Module One, Lesson 4 Activity 1: Probability with Dice and Data and Colliding Turtles, while still addressing the end goals of the Module One Lesson 4.

Science of Friendship

Posted August 16, 2016 by turtle

Why do humans help some people and not others?  This Project GUTS unit explores this question and allows students to test their own assumptions. Using methods and data from anthropology, sociology and psychology and computer modeling in NetLogo, students investigate the role of cooperation in human interactions—and how cooperation plays a role in global issues such as resource management, health equity and climate change.

Social Networks for StarLogo TNG

Posted August 16, 2016 by turtle

How are people connected?  Humans are inherently social and have relationships far more complex than the random encounters often seen in agent-based modeling. These relationships can vary in strength and meaning – we see social networks that range from kinship networks, friendship networks to contact networks used in the study of epidemiology. The primary goal of this unit is to engage students in simple interactive activities to explore social network concepts and to model those concepts.

If you can't find what you're looking for, send us a comment about what you were expecting to find.