Find Resources

Papercatchers

Posted July 27, 2018 by turtle

Papercatchers is a participatory simulation in which students learn about population growth and limits to growth. Students play the role of members of a growing population, follow simple rules governing survival and reproduction, and collect and graph data.

Modeling Change

Posted July 3, 2017 by sgibbs

This contributed curriculum physics unit introduces and builds models to explore concepts of independent and dependent change, constant and variable x and y change, gravity, and projectile motion. Each lesson contains detailed instructions on how to build each model, and links to base models and completed projects. Modeling Change Lesson 1 is also uploaded as an independent resource (since it can serve as an alternative introduction to StarLogo Nova).

Why Model?

Posted May 15, 2017 by sgibbs

A paper describing the author's reasons why modeling is essential to science.

Papeles en el viento ("Papercatchers")

Posted May 17, 2017 by Rizzi

"Papeles en el viento" (Papercatchers) es una simulación participativa en la que los estudiantes aprenden sobre el crecimiento de la población y los límites al crecimiento. Los estudiantes desempeñan el papel de miembros de una población creciente, siguen reglas sencillas que rigen la supervivencia y la reproducción, y recopilan y grafican datos.

¿Complejo o complicado?

Posted May 17, 2017 by Rizzi

¿Complejo o Complicado? utiliza una presentación de diapositivas para crear una actividad que se utiliza para involucrar a los estudiantes en argumentar basándose en evidencias y mejorar su comprensión sobre los sistemas adaptativos complejos.

Modeling Ecosystems in StarLogo Nova

Posted June 2, 2017 by sgibbs

This document gives background information and is a guide to CS in Science, Module 3 (Ecosystems) and building the rabbits and grass model.

Alternative Intro to StarLogo Nova - Modeling Change Lesson 1

Posted July 3, 2017 by sgibbs

The first part of the Modeling Change Unit can be used as a fun stand-alone programming activity for students unfamiliar with StarLogo Nova. It guides students to build a model that use keyboard controls to change the two-dimensional location of agents (in section 1a) and change other traits including the third dimension (z), shape, color, and heading (in section 1b).

Interview with Hal Scheintaub

Posted August 2, 2017 by ilee

Teachers with GUTS interviewed Hal Scheintaub and demo of StarLogo Nova models created by his students on August 2, 2017.

Middle School Dissolving Salt Chemistry Module options

Posted August 4, 2017 by mmarkham

This lesson was developed to be used with two stand alone models developed by GUTS as alternatives to the Chemistry Module 4. This is aimed at middle school students. This pairs a hands on lab activity with the CS models to explore the strengths and weaknesses of CS models of physical changes at an introduction to chemistry level. Students decode the models and make changes including adding and testing variables.

StarLogo NOVA 2.0: ¿Qué cambió y qué es lo nuevo?

Posted September 25, 2017 by Rizzi

Spanish version of "SLNOVA 2.0: WHAT'S CHANGED OR NEW".

Versión en español del documento "SLNOVA 2.0: WHAT'S CHANGED OR NEW" con la comparación entre ambas versiones y el detalle de las nuevas funcionalidades de SLNOVA 2.0

Tips for Facilitators

Posted May 5, 2018 by sgibbs

Suggestions on best practices for teaching Project GUTS lessons, by acting as a facilitator to student learning, rather than a lecturer on your known content.

Emergence video

Posted July 27, 2018 by sgibbs

A portion of a PBS NOVA video discussing the concept of emergence (or complex adaptive systems) where patterns emerge in nature where agents follow simple rules.

Silver Nitrate Production video

Posted July 27, 2018 by sgibbs

A short video showing "Silver Production from Silver Nitrate using a Copper Pipe" - used if wet lab activity not available for CS in Science Module 4 (Chemical Reactions)

Sugar Transport Activity

Posted April 17, 2017 by turtle

Have you ever drank a can of soda and suddenly felt more energetic? In this Biograph Virtual Lab, you will use a simulation to explore how the glucose molecules from the soda move from the lumen of your small intestine, across the membranes of your epithelial cells, and into your bloodstream. (Ultimately, the glucose in your bloodstream will move into your body’s cells).

If you can't find what you're looking for, send us a comment about what you were expecting to find.