Find Resources

Locating the Epicenter of an Earthquake Lesson

Posted February 28, 2020 by wellina

Identify the location of an earthquake epicenter using a travel time graph and three seismograph tracings. The epicenter is the point on Earth's surface directly above an earthquake. Seismic stations detect earthquakes by the tracings made on seismographs. Tracings made at three separate seismic stations are needed to locate an earthquake epicenter.

What's Represented?

Posted June 12, 2019 by ilee

These exercises ask the learner to identify abstractions in the computer model as compared to a diagram or image of a natural phenomenon.

Bloques de código para modelo de cambio climático

Posted May 16, 2017 by Rizzi

Es una hoja de referencia con los bloques de código necesarios para el modelo de cambio climático. Se explica bloque por bloque qué función cumple cada estructura en cada pestaña de la programación con StarLogo NOVA.

Simulación de un brote de Dengue

Posted March 29, 2017 by Rizzi

Este modelo simula la transmisión del virus del dengue en un barrio de cuatro manzanas durante 180 días. El vector del virus es el mosquito Aedes egyptii. La simulación muestra un gráfico con la evolución del brote (el cambio en la cantidad de personas sanas y de personas infectadas), otro gráfico con la evolución de la población de mosquitos y unos monitores que indican el estado de la población de mosquitos y cuántas personas fueron infectadas.

Prisoner's Dilemma (Tit for Tat)

Posted March 30, 2017 by turtle

A participatory simulation where partners examine strategies of cooperation versus individual gain. Based on the game theory activity of Prisoner's Dilemma, this activity introduces students to the contrast between theories of "Tragedy of the Commons" (individuals maximizing their own gain will result in collapse of the resources) and classic economic theory (maximum individual gain will lead to greatest efficiency).

Toss-Up

Posted March 30, 2017 by turtle

As a virus spreads through a community, epidemiologists might study how far a disease has spread, how quickly it spreads and how infectious it can be as well a numerous other pieces of data in order to understand the disease and its potential impact on a community. In this activity, students will simulate the spread of a virus such as the flu. Students will work in pairs to accumulate data using graph paper, a data chart, and a die. Before starting, groups will need to decide on three variables.

Daisy world

Posted April 3, 2017 by turtle

A model demonstrating the albedo effect of black or white surfaces. Use as a part of the Climate Change and Agriculture Project GUTS Curricular Unit, or as a stand-alone model, activity, and video.

An Example of CT in the Workplace

Posted May 15, 2017 by ilee

This is an example of how a computer modeler uses various aspect of computational thinking while designing, creating and using a computer model as a tool to think with.

Code Blocks for CS in Science Module 2 (Water Resources)

Posted July 27, 2018 by sgibbs

This blocks guide can help students decode the base model used in Module 2 -- Water Resources. The links below correspond to either StarLogo Nova 1.0 (Flash version) or StarLogo Nova 2.0 (HTML5/JavaScript version).

Computational Science video

Posted June 2, 2017 by sgibbs

A short video (1:27) on the computational science cycle, used in Project GUTS CS in Science (Modules 2-4).

Project GUTS teacher & facilitator guides

Posted June 19, 2018 by sgibbs

These guides are aimed at helping teachers or workshop facilitators help their students or participants be independent learners while working with computer models. They are a work in progress - final versions will be uploaded soon. Please feel free to point out any corrections or additions in a discussion thread -- Thanks!

Code Blocks for CS in Science Module 5 (Greenhouse Gases)

Posted July 27, 2018 by sgibbs

A guide for students when decoding the Greenhouse Gases model for CS in Science (Module 5). The links below correspond to this model as created in StarLogo Nova 1.0 (Flash version) or StarLogo Nova 2.0 (HTML5/JavaScript version).

The Greenhouse Effect

Posted July 27, 2018 by sgibbs

A short video on the basics of the greenhouse effect, used in CS in Science, Module 2 (Greenhouse gas model).

Introduction to Climate Modeling

Posted July 27, 2018 by sgibbs

This document gives background information for students to use with CS in Science Module 5 (Greenhouse Gas).

Dengue outbreak simulation

Posted March 29, 2017 by Rizzi

This model simulates the transmission of the dengue virus in a neighborhood of four blocks during 180 (one hundred and eighty) days. The vector of the virus is the mosquito Aedes egyptii. The simulation shows a chart of the evolution of the outbreak (the change in the number of healthy people and infected people), another graph with the evolution of the mosquito population and some monitors that indicate the state of the mosquito population and how many people were infected.

If you can't find what you're looking for, send us a comment about what you were expecting to find.