Find Resources

Skill Building Deck

Posted June 12, 2019 by ilee

A slide deck of exercises to build CS and decoding skills

Kinesthetic Flower Turtles Activity

Posted August 3, 2017 by carl

This activity is an extension to the CS in Science Module 1, Lesson 2, between activity 1 and activity 2. It is a kinesthetic activity to show how the agents behave according to a certain program. It can replace the activity that is there or be used as an extension or add on to the listed activities.

Traffic Patterns for StarLogo TNG

Posted November 24, 2016 by turtle

Why do traffic jams form?

Each year the number of paved miles grows by roughly 20,000 miles. When traffic gets too congested, traffic engineers must consider changes to existing roads or intersections. This unit engages students in interactive activities to explore pattern formation in complex systems, and in the use, modification, and creation of agent-based models to conduct experiments on simple virtual traffic systems, to study whether proposed road changes will the desired effect.

Battle of the Agents

Posted March 29, 2017 by turtle

A take on the classic board game Battleship, this paper and pencil activity is a fun way to help students understand the use of x and y coordinates in StarLogo Nova. After the activity, students can use the StarLogo Nova model to experiment with x and y locations in a game-like context.

What are the chances?

Posted March 30, 2017 by turtle

An off-line activity to introduce students to concepts of randomness and how to program percent chance using a slider in StarLogo Nova.

Guía de estudiantes para la actividad "Dados y datos" (Dice & Data)

Posted May 16, 2017 by Rizzi

Esta es la hoja de actividad para los estudiantes para "Dados y datos", una actividad de probabilidad. La probabilidad juega un rol importante en los modelos de sistemas complejos adaptativos. En esta actividad se programan agentes para imitar el movimiento de criaturas en el mundo real. También eventos aleatorios que ocurren cuando los agentes interactúen como por ejemplo contagiar una persona a otra.

Guía de observación de un modelo basado en agentes

Posted May 16, 2017 by Rizzi

Se trata de una guía para poder observar un modelo basado en agentes y reconocer sus diferentes partes, como por ejemplo las abstracciones (quiénes son los agentes, cuál es el entorno, cuáles son las interacciones); la automatización; los supuestos y el análisis.

¿Complejo o complicado?

Posted May 17, 2017 by Rizzi

¿Complejo o Complicado? utiliza una presentación de diapositivas para crear una actividad que se utiliza para involucrar a los estudiantes en argumentar basándose en evidencias y mejorar su comprensión sobre los sistemas adaptativos complejos.

The Giraffe and the Platypus

Posted June 12, 2017 by sgibbs

This is an activity that allows teachers in a workshop to experience and explore the equity issue involved in differences in background knowledge of students.

Exploring the Wiggle Walk and Collisions via a Kinesthetic Activity

Posted August 4, 2017 by jhenderson

This activity teaches the Wiggle Walk blocks (random right by ___ degrees, random left by___ degrees), through a kinesthetic activity and explores when a programmer would want to code agents to move this way. It avoids the statical analysis of the random probabilities found in Module One, Lesson 4 Activity 1: Probability with Dice and Data and Colliding Turtles, while still addressing the end goals of the Module One Lesson 4.

What's Represented?

Posted June 12, 2019 by ilee

These exercises ask the learner to identify abstractions in the computer model as compared to a diagram or image of a natural phenomenon.

What is a Complex Adaptive System?

Posted July 26, 2018 by sgibbs

A brief explanation of the characteristics of Complex Adaptive Systems, with a few examples of activities that demonstrate these characteristics.

Trailblazers

Posted July 27, 2018 by turtle

Trailblazers is a fun pencil and paper activity where students write simple instructions for another student to navigate a maze. The instructions are drawn on the maze as commands (if square is red, turn right, etc.) and then students exchange papers to navigate the maze following only the commands. This is a preliminary activity for the Bumper Turtles coding activity.

Complex or Complicated?

Posted July 27, 2018 by turtle

Complex or Complicated uses a slide presentation to create a whole class game-show like activity that is used to engage students in argument from evidence and refine students' understanding of complex adaptive systems.

Dice and Data (see also CS in Science, Module 1)

Posted July 27, 2018 by turtle

Dice and data is a hands-on activity in which students learn about probability and how probability is used in modeling and simulation. Students first investigate single dice rolls and connect the results to randomness, then students investigate two die rolls and learn how the results of two-die rolls are used to mimic animal movement in a wiggle walk.

Model Design Form

Posted July 27, 2018 by turtle

Here are pdf, docx, and google docs links to the Model Design Form, used in Project GUTS CS in Science Modules.

Alternate activities to introduce Project GUTS

Posted July 27, 2018 by turtle

Sometimes, teachers have a students who have already participated in Project GUTS introductory activities, and want to use something different, or want another activity to expand a lesson. Below are links to some alternate activities, both hands-on and on-line, for you to explore.

Peanut Butter & Jelly Robot

Posted September 1, 2016 by turtle

This activity introduces students to several computer science concepts, to the necessity for thoroughness while programming, and to the often strange results of literalism. The overarching theme is that computers do what they are told and nothing more. The ability to read between the lines and determine what was meant rather than what was said is a skill computers lack. Additionally, students are introduced to the concept of debugging.

If you can't find what you're looking for, send us a comment about what you were expecting to find.