Find Resources

Modeling molecules is solids, liquids, and gases

Posted May 12, 2021 by mbuhl

This model simulates intermolecular forces and lets people change the temperature using a slider. At high temperatures, you can see the molecules fly around as a gas, with occasional collisions. With lower temperatures they condense to a liquid, and even lower they freeze to a solid.

Ficha de diseño de un modelo

Posted May 16, 2017 by Rizzi

Es una guía con preguntas que deben contestarse cuando se diseña un modelo de simulación basado en agentes.

Alternative Intro to StarLogo Nova - Modeling Change Lesson 1

Posted July 3, 2017 by sgibbs

The first part of the Modeling Change Unit can be used as a fun stand-alone programming activity for students unfamiliar with StarLogo Nova. It guides students to build a model that use keyboard controls to change the two-dimensional location of agents (in section 1a) and change other traits including the third dimension (z), shape, color, and heading (in section 1b).

Modeling Change

Posted July 3, 2017 by sgibbs

This contributed curriculum physics unit introduces and builds models to explore concepts of independent and dependent change, constant and variable x and y change, gravity, and projectile motion. Each lesson contains detailed instructions on how to build each model, and links to base models and completed projects. Modeling Change Lesson 1 is also uploaded as an independent resource (since it can serve as an alternative introduction to StarLogo Nova).

Kinesthetic Flower Turtles Activity

Posted August 3, 2017 by carl

This activity is an extension to the CS in Science Module 1, Lesson 2, between activity 1 and activity 2. It is a kinesthetic activity to show how the agents behave according to a certain program. It can replace the activity that is there or be used as an extension or add on to the listed activities.

Maze

Posted August 3, 2017 by arodriguez

Students struggle understanding proportional relationships and scaling shapes. This module allows students to scale one shape and transfer it to 3 different environments. Students will create a game online (SL Nova) and program a Sphero (robot) while learning the math standards.

Exploring the Wiggle Walk and Collisions via a Kinesthetic Activity

Posted August 4, 2017 by jhenderson

This activity teaches the Wiggle Walk blocks (random right by ___ degrees, random left by___ degrees), through a kinesthetic activity and explores when a programmer would want to code agents to move this way. It avoids the statical analysis of the random probabilities found in Module One, Lesson 4 Activity 1: Probability with Dice and Data and Colliding Turtles, while still addressing the end goals of the Module One Lesson 4.

Middle School Dissolving Salt Chemistry Module options

Posted August 4, 2017 by mmarkham

This lesson was developed to be used with two stand alone models developed by GUTS as alternatives to the Chemistry Module 4. This is aimed at middle school students. This pairs a hands on lab activity with the CS models to explore the strengths and weaknesses of CS models of physical changes at an introduction to chemistry level. Students decode the models and make changes including adding and testing variables.

Trailblazers

Posted July 27, 2018 by turtle

Trailblazers is a fun pencil and paper activity where students write simple instructions for another student to navigate a maze. The instructions are drawn on the maze as commands (if square is red, turn right, etc.) and then students exchange papers to navigate the maze following only the commands. This is a preliminary activity for the Bumper Turtles coding activity.

Skill Building Deck

Posted June 12, 2019 by ilee

A slide deck of exercises to build CS and decoding skills

Code Blocks for CS in Science Module 1: Intro to Computer Science & Simulation

Posted July 27, 2018 by sgibbs

Here are links to the Code Blocks for CS in Science Module 1, for StarLogo Nova 1.0 (Flash version), and the Code Blocks for CS in Science Module 1 for StarLogo Nova 2.0 (HTML5/JavaScript version). This is not the one-page Blocks and Drawers Guide for StarLogo Nova (those documents are linked below).

Guides, Common Forms, and Activity Sheets for CS in Science Modules

Posted July 27, 2018 by turtle

This 56-page pdf includes printable copies of the Student Activity Guides, Common Forms, Blocks Guides, CS Concepts, and Progress Monitors for Modules 1-4 of CS in Science. This version was created in 2015, for StarLogo Nova 1.0. If using StarLogo Nova 2.0, search for the Blocks guides attached to each module.

Model Design Form

Posted July 27, 2018 by turtle

Here are pdf, docx, and google docs links to the Model Design Form, used in Project GUTS CS in Science Modules.

Model Observation Form

Posted July 27, 2018 by ilee

This form is used to capture a learner's thinking while observing a model.

Math Basics for StarLogo Nova

Posted July 27, 2018 by turtle

This handout explains left and right degrees, x and y coordinates, and headings in StarLogo Nova.

Cookbook for Common Codes for StarLogo Nova 1.0 and StarLogo Nova 2.0

Posted July 27, 2018 by turtle

The links below include explanations and screen shots for common codes in both versions of StarLogo Nova, including setting up the world, creating and renaming breeds, using default traits and creating custom traits, random and wiggle walks, coordinates and using 3-D view, using keyboard controls, using widgets including sliders, data boxes, charts and line graphs, terrain color, using collisions, creating a stop code, and teaching agents to chase or run away from other agents.

Code Blocks for CS in Science Module 4 (Chemical Reactions)

Posted October 27, 2018 by sgibbs

Use this document while decoding the base model in CS in Science, Module 4: Chemical Reactions.
Select the relevant link below, depending on whether you are using StarLogo Nova 1.0 (flash version) or StarLogo Nova 2.0(HTML5/JavaScript version).

Guía de observación de un modelo basado en agentes

Posted May 16, 2017 by Rizzi

Se trata de una guía para poder observar un modelo basado en agentes y reconocer sus diferentes partes, como por ejemplo las abstracciones (quiénes son los agentes, cuál es el entorno, cuáles son las interacciones); la automatización; los supuestos y el análisis.

If you can't find what you're looking for, send us a comment about what you were expecting to find.