Find Resources

Exploring the Wiggle Walk and Collisions via a Kinesthetic Activity

Posted August 4, 2017 by jhenderson

This activity teaches the Wiggle Walk blocks (random right by ___ degrees, random left by___ degrees), through a kinesthetic activity and explores when a programmer would want to code agents to move this way. It avoids the statical analysis of the random probabilities found in Module One, Lesson 4 Activity 1: Probability with Dice and Data and Colliding Turtles, while still addressing the end goals of the Module One Lesson 4.

Modeling Change

Posted July 3, 2017 by sgibbs

This contributed curriculum physics unit introduces and builds models to explore concepts of independent and dependent change, constant and variable x and y change, gravity, and projectile motion. Each lesson contains detailed instructions on how to build each model, and links to base models and completed projects. Modeling Change Lesson 1 is also uploaded as an independent resource (since it can serve as an alternative introduction to StarLogo Nova).

Alternative Intro to StarLogo Nova - Modeling Change Lesson 1

Posted July 3, 2017 by sgibbs

The first part of the Modeling Change Unit can be used as a fun stand-alone programming activity for students unfamiliar with StarLogo Nova. It guides students to build a model that use keyboard controls to change the two-dimensional location of agents (in section 1a) and change other traits including the third dimension (z), shape, color, and heading (in section 1b).

Project GUTS MOOC

Posted December 7, 2016 by turtle

Project GUTS presented the CS in Science curriculum modules in a Massive Open Online Course (MOOC). The links below will allow you access to the original MOOC site, to see not only the written curriculum but also screencasts of building the related StarLogo Nova models and other background information for teachers and facilitators. The MOOC was also translated in Spanish (see link below).

For the 2017 course, please go to guts-2017.appspot.com

Social Networks for StarLogo TNG

Posted August 16, 2016 by turtle

How are people connected?  Humans are inherently social and have relationships far more complex than the random encounters often seen in agent-based modeling. These relationships can vary in strength and meaning – we see social networks that range from kinship networks, friendship networks to contact networks used in the study of epidemiology. The primary goal of this unit is to engage students in simple interactive activities to explore social network concepts and to model those concepts.

If you can't find what you're looking for, send us a comment about what you were expecting to find.