Find Resources

Natural Selection Prey and Predator

Posted May 14, 2021 by sgibbs

This post includes a link to a model that can be used with the OpenSciEd Bacteria Food Hunt Unit net logo simulation.

Natural Selection Programming

Posted May 11, 2021 by sgibbs

A lesson for middle school science that uses a variation of the rabbits and grass program to explore concepts of natural selection.

Sugar Transport Activity

Posted April 17, 2017 by turtle

Have you ever drank a can of soda and suddenly felt more energetic? In this Biograph Virtual Lab, you will use a simulation to explore how the glucose molecules from the soda move from the lumen of your small intestine, across the membranes of your epithelial cells, and into your bloodstream. (Ultimately, the glucose in your bloodstream will move into your body’s cells).

Code.org and SLNova Computer Science Concepts

Posted May 13, 2017 by kristico

This is a 4 week unit for a Computer Technology class in a middle school. Students are introduced to computer science concepts through lessons in Code.org's Course 3. Students then apply those concepts in SLNova projects.

Alternative Intro to StarLogo Nova - Modeling Change Lesson 1

Posted July 3, 2017 by sgibbs

The first part of the Modeling Change Unit can be used as a fun stand-alone programming activity for students unfamiliar with StarLogo Nova. It guides students to build a model that use keyboard controls to change the two-dimensional location of agents (in section 1a) and change other traits including the third dimension (z), shape, color, and heading (in section 1b).

Modeling Change

Posted July 3, 2017 by sgibbs

This contributed curriculum physics unit introduces and builds models to explore concepts of independent and dependent change, constant and variable x and y change, gravity, and projectile motion. Each lesson contains detailed instructions on how to build each model, and links to base models and completed projects. Modeling Change Lesson 1 is also uploaded as an independent resource (since it can serve as an alternative introduction to StarLogo Nova).

Kinesthetic Flower Turtles Activity

Posted August 3, 2017 by carl

This activity is an extension to the CS in Science Module 1, Lesson 2, between activity 1 and activity 2. It is a kinesthetic activity to show how the agents behave according to a certain program. It can replace the activity that is there or be used as an extension or add on to the listed activities.

Maze

Posted August 3, 2017 by arodriguez

Students struggle understanding proportional relationships and scaling shapes. This module allows students to scale one shape and transfer it to 3 different environments. Students will create a game online (SL Nova) and program a Sphero (robot) while learning the math standards.

Exploring the Wiggle Walk and Collisions via a Kinesthetic Activity

Posted August 4, 2017 by jhenderson

This activity teaches the Wiggle Walk blocks (random right by ___ degrees, random left by___ degrees), through a kinesthetic activity and explores when a programmer would want to code agents to move this way. It avoids the statical analysis of the random probabilities found in Module One, Lesson 4 Activity 1: Probability with Dice and Data and Colliding Turtles, while still addressing the end goals of the Module One Lesson 4.

Block-based agent-based modeling tool based on Scratch

Posted September 25, 2017 by Rizzi

Cellular is an agent-based modeling tool that uses a Scratch-like interface and allows teachers and students to create models and simulations in a very easy way. This makes this tool suitable to introduce ABM into the Primary level but also in Middle & High School taking advantage of previous students experience with Scratch. Cellular is based on Snap wich it's also based on Scratch. And you can also work off-line!!

Sample rubric for ecosystem module

Posted August 4, 2018 by sgibbs

This rubric was previously posted on the Code.org site and many teachers have found it to be helpful. You can save a copy and modify as fits your curriculum.

Module 3 Lesson 1 - Ecosystems as Complex Adaptive systems

Posted January 30, 2020 by wellina

In this lesson, students will be introduced to ecosystems concepts through an activity called "Papercatchers", a participatory simulation in which students play the part of agents in a simulation. After playing the “game” that illustrates population dynamics and carrying capacity, students will view a computer model of a simple ecosystem. Through the model, students will review concepts of population growth, producers and consumers, and the movement of energy through an ecosystem.

Module 3 Lesson 2 - Rabbits and Grass Model

Posted January 30, 2020 by wellina

In this lesson, students will participate in two activities that USE the Rabbits and Grass model. The first activity is a look under the hood at the model to understand what was included and left out of the model (abstraction). In
the second activity, students will learn to design and conduct systematic experiments using the model as an experimental test bed. They will instrument their model to collect data, then analyze data and report out on
their findings.

Module 3 Lesson 3 - Adding a Predator

Posted February 10, 2020 by wellina

In this lesson, students will modify the Rabbits and Grass model by adding a predator, a Mountain Lion, to answer a new question: “Does adding a top predator increase or decrease the stability of an ecosystem?” In the second activity, students will design and run experiments to see if adding a predator has an impact on the ecosystem. This activity will reinforce the concepts of energy flow through ecosystems and the often unexpected results of interactions in complex adaptive systems.

Module 3 Lesson 4 - Create Your Own Ecosystem Model

Posted February 10, 2020 by wellina

In this lesson, students will design their own ecosystems projects consisting of a question, experimental design and model. In the first activity, students will learn about the computational science cycle and use it to scope their project. This leads to a second activity where they start designing and implementing their model.

COVID-19 Modelling Challenge

Posted March 18, 2020 by wellina

Learn basic StarLogo Nova skills then use those skills to customize your model to reflect how Coronavirus spreads. To that model, you can add different strategies and study the impact of the strategies on containing COVID-19’s spread.

Decode NYC Models

Posted January 13, 2021 by wellina

In the NSF-funded DecodeNYC program at the American Museum of Natural History, middle school students use the agent-based game and simulation programming environment StarLogo Nova to use, modify, decode, and create scientific models to test different strategies for fighting Lyme disease and answer questions about their urban ecosystem.

DECODE NYC Virtual Lesson Plan - MODIFYING A MODEL: OMNIVOROUS FOXES

Posted January 27, 2021 by wellina

This remote lesson serves as an opportunity for students to modify the code of an agent-based model to reflect the complexity of real-world food webs. Students will evaluate theeffectiveness of the modifications based on their understanding of population dynamics.

Gene Regulation and Protein Synthesis

Posted April 17, 2017 by turtle

Every cell in your body has a full set of genes, or ‘recipes,’ to build many different kinds of proteins (including enzymes). What causes a gene to go from its normal ‘turned off’ state (when it IS NOT building proteins) to its ‘turned on’ state (when it IS building proteins)?  To answer this question, we will zoom in and take a closer look at a gene and its environment to see how and why a specific protein is made.  

If you can't find what you're looking for, send us a comment about what you were expecting to find.