Find Resources

Module 1 Lesson 5 - Modeling the Spread of Disease

Posted November 17, 2019 by wellina

In this lesson students will convert their Colliding Turtles model into a simple Epidemic model by adding slider widgets for transmission rate and recovery rate. The Contagion model represents a very simplified version of an epidemic or spread of a disease. Two variables will be created: transmission rate and recovery rate. Students will later use this model to run experiments to determine if disease will spread throughout a virtual population in different scenarios.

Pair Programming video

Posted July 27, 2018 by turtle

This short video (2:51 minutes) features two middle school girls describing and practicing pair programming. It is a great introduction to this method of learning programming and creating models.

Dice and Data (see also CS in Science, Module 1)

Posted July 27, 2018 by turtle

Dice and data is a hands-on activity in which students learn about probability and how probability is used in modeling and simulation. Students first investigate single dice rolls and connect the results to randomness, then students investigate two die rolls and learn how the results of two-die rolls are used to mimic animal movement in a wiggle walk.

The Greenhouse Effect

Posted July 27, 2018 by sgibbs

A short video on the basics of the greenhouse effect, used in CS in Science, Module 2 (Greenhouse gas model).

Silver Nitrate Production video

Posted July 27, 2018 by sgibbs

A short video showing "Silver Production from Silver Nitrate using a Copper Pipe" - used if wet lab activity not available for CS in Science Module 4 (Chemical Reactions)

Papercatchers

Posted July 27, 2018 by turtle

Papercatchers is a participatory simulation in which students learn about population growth and limits to growth. Students play the role of members of a growing population, follow simple rules governing survival and reproduction, and collect and graph data.

Debugging Challenges for StarLogo Nova

Posted July 27, 2018 by turtle

These challenges ask students to identify and correct common coding errors within StarLogo Nova programs. The first challenge is generic, all others relate to the content area module from CS in Science. Students like to solve the problems and fix the code, and learn about debugging skills while engaging further with content area modules. It is also a good review for instructions/facilitators before building code with students.

Coding Challenges

Posted July 27, 2018 by turtle

Coding Challenge are a series of short challenges that focus on improving coding skills using StarLogo Nova. Each set of challenges focuses on a specific concept: degrees & heading, x & y coordinates and randomness, conditions including absolute value and percent chance, adding color to the terrain and repeat loops, using the z coordinate, and other computer science concepts (logic blocks, data collection),.

Walk & Turn for StarLogo Nova

Posted July 27, 2018 by turtle

This is the CS in Science, Module 1, Activity 1 activity. Students participate in an activity acting as agents, then view a computer model, to introduce concepts of computer science and complex adaptive systems.

Complex Adaptive Systems Modeling Video

Posted July 27, 2018 by turtle

This short video (3:13 minutes) introduces complex adaptive systems and agent-based modeling concepts to middle-school students. It shows beautiful footage of birds flocking as an example of a complex adaptive system.

Module 1 Lesson 4 - Probability with Dice and Data and Colliding Turtles

Posted November 17, 2019 by wellina

In this lesson students will participate in two activities. In the first activity, students will learn about probability, how it is implemented in StarLogo Nova, and use probability to implement chance behavior in agent movement. In the second activity, students will create a Colliding Turtles project in which turtles react to other turtles upon collision. The wrap-up discussion covers what probability is used for in computer modeling and simulation.

Alternate activities to introduce Project GUTS

Posted July 27, 2018 by turtle

Sometimes, teachers have a students who have already participated in Project GUTS introductory activities, and want to use something different, or want another activity to expand a lesson. Below are links to some alternate activities, both hands-on and on-line, for you to explore.

What's Represented?

Posted June 12, 2019 by ilee

These exercises ask the learner to identify abstractions in the computer model as compared to a diagram or image of a natural phenomenon.

Skill Building Deck

Posted June 12, 2019 by ilee

A slide deck of exercises to build CS and decoding skills

Module 1 Lesson 2 - Introduction to StarLogo Nova and Building Flower Turtles

Posted November 3, 2019 by wellina

In this lesson students will participate in two activities. The first activity is a guided introduction to the StarLogo Nova simulation environment. In the second activity, students will learn a few simple commands and then create their first computer program. Students will progress from single turtle explorations to instructing many turtles to follow their commands in parallel.

Module 1 Lesson 3 - Conditionals with Trailblazer and Bumper Turtles

Posted November 17, 2019 by wellina

In this lesson students will participate in two activities. In the first they will
learn about conditionals, logic, and Boolean expressions as they guide an
agent through a puzzle. They also consider the best path / solution and the degree of universality of their solution. In the second activity, students will learn a few simple commands and then starting with a basic project, implement a Bumper Turtles program in which agents respond to their environment.

Complex or Complicated?

Posted July 27, 2018 by turtle

Complex or Complicated uses a slide presentation to create a whole class game-show like activity that is used to engage students in argument from evidence and refine students' understanding of complex adaptive systems.

If you can't find what you're looking for, send us a comment about what you were expecting to find.